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Bond Percolation on a Finite Lattice: 
The One-State Potts Model Reconsidered 
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Bond percolation on a finite lattice is studied by looking at the Kac mean field 
model. The investigation utilizes the one-state Potts model connection 
established by Kasteleyn and Fortuin. To deal with special problems associated 
with the finite extent of the system we re-cast the partition function, which 
allows us to investigate the percolation transition in detail. This fundamental 
new formulation clears up certain ambiguities present in previous treatments 
and indicates a possible new direction in the study of other replica-type models. 
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1. I N T R O D U C T I O N  

The problem of percolation has commanded the attention of physicists and 
applied mathematicians for decades. (1'2~ This is for several reasons. First, 
percolation processes play an important role in a variety of physical 
phenomena, especially those relating to the behavior of random systems/3) 
Further, it represents a problem in applied mathematics of some interest 
because of the intrinsic challenge it presents for the mathematician as well 
as its importance in the theory of graphs and statistics. A major advance in 
the theory of percolation occurred when Fortuin and Kasteleyn (4~ pointed 
out a fundamental mathematical connection between a particular example 
of a percolating system called bond percolation and a set of statistical 
mechanical models known as The Potts models. (5~ This identification 
strengthened the notion that a transition ought to occur in an infinite per- 
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colating system in analogy with the phase transition that occurs in systems 
at finite temperatures. 

In the case of the percolating system, the transition is from a system 
filled with finitely extended clusters of points, or sites, connected by "good" 
or "active" bonds to a system in which one of the clusters, the "spanning 
cluster," contains a finite fraction (in an infinite system) of all sites in it. 
This transition is sharp and nonanalytic. Furthermore, it has many of the 
hallmarks of a continuous, or critical, point transition in a thermodynamic 
system at finite temperature. Notably, one can identify critical exponents 
that describe the singular way in which quantities disappear or go to 
infinity as the transition is approached. 

As in the case of phase transitions, the renormalization group (6~ has 
proved to be a to61 of considerable power in the analysis of non- 
analyticities in percolating systems. Real space methods have yielded useful 
approximations to percolation critical exponents whose reliability is, 
however, difficult to assess as a result of the uncontrolled approximations 
that such methods involve. Nevertheless, these methods retain considerable 
utility. Another approach, possessing the virtue of rigor, in principle at 
least, is the field theoretically based method that characteristically yields 
predictions in the form of interdimensional e expansions, (7-9~ the quantity 
being the difference between the spatial dimension of the system of interest 
and a special lower mean field dimension. The lower mean field dimension 
for the percolation transition is six, so that e = 3 in three dimensions and 
the value of the low-order expansions that are generated in this approach 
as the basis of quantitative predictions for critical exponents seems, at first 
sight, small. This renormalization group approach relies on The Potts 
model analogy. 

The question of the quantitative validity of the e expansion as applied 
to the percolation transition was addressed by Kirkpatrick in 1976, (m~ 
when he performed a numerical experiment to obtain the properties of the 
percolation transition on large but finite lattices of various spatial dimen- 
sionalities. In particular, he looked at the transition in six, five, three, and 
two dimensions. What he found was intriguing. The ~ expansion seemed to 
converge at a disappointingly slow rate close to six dimension, but it 
remained a remarkably good approximation in lower dimensionality. For 
example, the exponent 7 as predicted by the e expansion stayed within 20% 
of the value obtained numerically by Kirkpatrick. 

Thus percolation is a pervasively occurring phenomenon presenting 
nontrivial theoretical challenges for which a rigorous and useful statistical 
mechanical analogy exists. The results of calculations based on this analogy 
which can and have been compared with the results of computer 
simulations are remarkably accurate. 
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In this paper, we report the results of the first steps in a project to 
extend the field theoretical approach to the study of finite percolating 
systems. This is with an eye to making a more nearly complete connection 
between the results of the e expansion and those of numerical simulations. 
Our long-term goal is to develop a theory that allows for the use of finite- 
size scaling in the analysis of the computer-generated data. Ultimately, we 
hope to be able to produce curves for the behavior of finite percolating 
systems that incorporate both the power law behavior that one expects to 
see in a large but finite system near, but not too close to, a phase trans- 
ition, and also accurately depict the rounding that occurs asymptotically 
close to the transition. In other words, we are working toward the produc- 
tion of full crossover curves for the properties of finite percolating systems. 

What we report here is the exact results of a finite-size model 
calculation which are significant first steps toward understanding finite size 
percolating systems. We have obtained results for the behavior near the 
percolation transition of key quantities in the mean field, or Kac model of 
percolation. (11) The infinite lattice problem has been investigated in con- 
siderable detail by Erd6s and R6nyi (12~ and Wu./13~ We supplement their 
results by considering the behavior of this system asymptotically close to 
the transition, exploiting the Potts model analogy. In the process, we 
resolve some long-standing puzzles concerning certain mathematical quirks 
and apparent pathologies of the one-state Ports model, shown by 
Kasteleyn and Fortuin to have the same properties as the bond percolating 
system. Thus, our results are of intrinsic interest quite aside from their 
ultimate utility in a more physically motivated finite-size calculation. 

Moreover, our results and methods may well possess virtues that 
transcend their application to the study of finite percolating systems, as 
interesting as that subject is. The one-state Ports model belongs to a class 
of statistical mechanical models that are used in the study of random 
systems and are known generically as "replica" models. They are them- 
selves only meaningful, in that they yield physically meaningful results, 
after certain limits have been taken. The connection between the results 
obtained through this limiting process and the physics of random systems 
can commonly be rigorously established, but there are often no clear 
guidelines for the implementation of the limiting procedure in actual 
calculations. Thus, one has to take a limit of the form n ~ 1, where n is the 
number of states in the Potts model, continuously while, during some of 
the stages of a calculation at least, the quantity in question can only be 
allowed to take on integer values. The question as to whether one has lost 
certain crucial pieces of information regarding the behavior of the system 
when n is noninteger lingers, casting doubt on the validity of the 
calculation, even when no pathology emerges. Another difficulty that arises 



836 Rudnick and Gaspari 

with distressing frequency in calculations on replicated systems is that it is 
unclear how the limit n --* 1 is to be taken. Often one is faced with more 
than one way of doing it and has to make a choice based on arguments of 
dubious physical merit. Thus, while replica methods provide theoreticians 
with a potentially powerful tool for the study of random systems, these 
models are commonly fraught with mathematical ambiguities that cast 
doubt on the validity of even the most apparently benign results. 

What we do in the work reported here that sets it apart from 
previously published investigations on the one-state Potts model is take the 
limit n --* 1 almost immediately in our calculations. (~3't4) The limit is, in fact 
taken sufficiently early on that there are no ambiguities concerning how it 
is done and allows the correctness of other limiting procedures to be 
critically examined. This stratagem also facilitates our study of the model 
when N, the number of sites, is large, but not infinite. We are able to make 
precise predictions concerning the behavior of the large, finite Potts model 
in the mean field limit, while all previous calculations have only been able 
to accomplish this for infinite systems. 

In Section 2 the model is presented and formal exact expressions are 
derived for the partition function of the one-state Potts model for a system 
of finite size. Correspondence with the generating function for the 
appropriate bond percolation problem is also established. The general 
results are developed in this section. The effects of finite size are given in 
Section 3. Conclusions are drawn in Section 4. Some of the more intricate 
mathematical detail is developed in the appendixes. 

2. THEORY OF THE ONE-STATE POTTS M O D E L  FOR A FINITE 
SIZE SYSTEM 

The effective Hamiltonian for the mean field Potts system is of the 
form 

/~t-/- J 

jk j 

where/~ is the inverse temperature, 1/kT, and the quantity ~j is an n-dimen- 
sional vector occupying the j th  site of a lattice; this degree of freedom is 
constrained to point along one of the principal directions of the n-dimen- 
sional vector space in which it is embedded. Notice that every ~j is coupled 
to every other ~j. The factor of 1IN that multiplies the bilinear term keeps 
the energy properly extensive, i.e., the interaction energy scales linearly 
with AT. The second term on the right-hand side of (1) represents a linear 
coupling of ~ with a uniform external symmetry-breaking field, h. The 
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characteristic of the system under study that allows exact calculations is the 
long range of the interaction between the degrees of freedom. Because the 
interaction couples every ~/ with every other ~/, one can imagine each 
degree of freedom seeing an average ~ that contributes to a site-indepen- 
dent effective field, herr. In the infinite system, one characteristically replaces 

by 

J 

N<r 

where the brackets denote the thermal average. However, in the finite 
system one must keep careful track of the differences between the two 
expressions. It is just this difference that gives rise to finite-size effects. 

As in all problems in equilibrium statistical mechanics, the central goal 
here is the evaluation of the partition function, 

Zn = ~ e - ~  (2)  

where the summation is over all configurations of the o/s. Simple counting 
tells us that in a lattice with N sites there are n N such configurations. The 
limit n ~ 1 is thus trivial, for in that limit there is only o n e  configuration 
for the system to take. However, one interesting and nontrivial limit is 

where 

F=~l!iml (~--Zl)=(~lnZn)n=l (3) 

Z 1  = e N J / 2 -  Nh (4) 

is the partition function corresponding to a single-state system which has 
all the ~g's aligned in the direction of h, which in turn points along one of 
the principal axes of the embedding space of the ~/'s. 

Fortuin and Kasteleyn <4~ have established the following relation for 
the quantity F, and the generating function for the percolation problem: 

where n c is the average number of clusters containing m sites. Taking 
derivatives of F with respect to h, the magnitude of h, we obtain successive 

822/42/5-6-8 
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moments of the cluster size distribution. These quantities are among those 
that behave in a singular manner at the percolation transition. (13'15) 

The evaluation of the partition function is achieved by first noting that 
the first term on the right of (1) can be written as follows: j 2 j  

2N % +2-~ I~jl2 (6) 

so that the contribution of the bilinear term in the effective Hamiltonian to 
e -pH can be rewritten 

e ( N ~  n/2 
J / 2  h ) -  ~ - -  ( N / 2 J ) y  - k ~ j /  ; ' " r e  (y- Ydy (7) 

where the n-dimensional vector y is integrated over all space. The term 6 in 
the exponent is shorthand for ~ j  %. This representation of the bilinear 
term in the Boltzmann factor is the first step in the Hubbard-Stratonovitch 
transformation. (16) It has the immediate effect of decoupling the degrees of 
freedom from each other. They couple indirectly through the intermediate 
"field" y. The constant term e -Jn will henceforth be dropped since it plays 
no role in the subsequent development. 

The next step in evaluating the partition function, Zn, is to sum eq. (7) 
over the configurations of the %%. Because the a's are now decoupled those 
sums can be performed independently. The term to be summed over the 
configuration of a single % is 

exp(%, y - %.h )  (8) 

Summing (8) over the n possibilities for the direction of each of the unit 
vectors % we obtain for our partition function 

_(N nJ2 
Z n - \ - f ~ j  i" ' f lexp(-Ny'y)](e(Yl-h~176 (9) 

Now, the term (e(Y~-h~)+ ...)N in (9) is the coefficient of cN/N! in the 
power series expansion in c of 

exp[c(e(y~-ho + ... + e(yn ho))] (10) 

Thus the partition function is just the coefficient of cN/N! in 

fex [- ] ~-) y" y + c(e (yl h i ) + . . .  + e ( y . - h . ) ) ] d y  (11) 
2~J] 
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Expression (11) contains integrals that when taken over real yi's 
diverge for any finite N as long as Re(c)> 0. These integrals are to be 
understood formally as generating functions for a power series expansion in 
c, which can be extracted in principle from the convergent integrals over 
real Yi for Re(c)< 0. Alternatively, one can make the integrals converge 
when Re(c)>0  by deforming the integration contours as described in 
Appendixes A and B. These deformations do not affect the power series 
expansions, but do result in branch cuts terminating at the origin in the 
complex c plane. This analytic structure is discussed in the first two Appen- 
dixes. The discontinuity across a cut vanishes as c ~ 0 more rapidly than 
any positive power of c. The integrations over the various components of 
the vector y can now be carried out independently, resulting in the follow- 
ing expression for the partition function: 

2re J] ; = 1 

If we imagine that h~ is nonzero and equal to h, while hj>~=0, the 
expression in (12) becomes 

t N ~n/2 

x I f e x p ( -  N ~ y 2 + c e ' ) d y ]  n-I (13) 

To obtain the proper limit for the connection with percolation, set 
n =  1 +A in (13) and expand to first order in A: 

(14) 
where 

N 2 

The generating function for percolation (5) is the coefficient of cX/N! in the 
contribution to (14) that is of first order in A, except for the factor Z~ I, 
which need not concern us for now. The desired result is the coefficient of 
cN/N! in 

( N ~  1/2 {~ in (~--~) + In . ~ ]  y,(ce_h) N ( ~ ( c ) ) }  (16) 
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The task remaining is to extract the coefficient of cN/N! in the power series 
expansion of Z(ce -~) ln[~(c)] .  

The coefficient of cN/N! in ~(ce h) is just 

Ny  2 ( N ~ ~/2 

The more difficult task of obtaining the corresponding coefficient in 
Z(ce h) lnZ(c) will be accomplished formally by multiplying 
~(ce h)lnZ(c)  by N!/(2~cic u+t) and then performing an integral over 
complex c around a contour that encircles the origin. Since c = 0  is a 
branch point of ~(c)  we choose a contour with asymptotically small radius 
that starts just above the branch cut on the real c axis and ends, after 
encircling the origin counterclockwise, just below the branch cut. This 
contribution to the generating function then becomes 

I ( N ) 1/2 N! (18) 

where C denotes the contour described above. Combining this with 
equation (17) allows us to write a formal expression, which is exact, for the 
generating function of mean field percolation problem for N sites 

(19) 

Equation (16) and (19) contain important new results for the one-state 
Potts model which we now discuss. In order to proceed further, the con- 
tour integral must be evaluated. We begin by noting that the factor Ny2/2J 
in the exponential in the integrand in (15) varies, for large N, very rapidly, 
with y. This allows us to use the method of steepest descents under general 
circumstances in the evaluation of Z(ce-h). It is straightforward to verify 
that the use of this method yields essentially the same result for the coef- 
ficient of oN~N! as was obtained in equation (17). Since ln[~(c)]  varies 
qualitatively less rapidly with c than ~(ceh), we can write the integral (18) 
as a double integral over 

N y2+ceY h (N+l)ln(c)]lnl ~ (c)] (20) exp I -  2-) 

Under the assumption that ln[~2(c)] varies relatively slowly with c, we 
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evaluate the double integral by looking for extrema in the exponential as a 
function of both y and c. The extremum equation for y is 

N -~ y + ceY-h=O (21) 

and for c: 

N + I  eY--h 
C 

The solutions of these two equations are 

y=J  

and 

- -  - 0 ( 2 2 )  

(23) 

c=  (N+ 1)e -J+h (24) 

When exponentiated, this yields, at leading order in N, 
1/N! exp( -Nh  +JN/2). Our result for the contour integral is thus 

exp (J___~_ Nh).ln ~ [(N + l )e o,+h] 

~_exp(J_~_Nh).ln~[Ne J+h] (26) 

This result for the one-state Potts model partition function will be 
called the replacement result, because it follows from the replacement of c 
by Ne -J+h in ln[Z(c)] .  Proceeding with the evaluation, we are left with 
the integral 

N y2  . -  
In I f  exp ( -  ~-) +Ne y J+h) dy] (27) 

N 2 - ~-~'J +(N+ 1)e-S+h.eJ-h--(N+ 1)InF(N+ 1)e -J+h] 

= J  ~-+1 - ( N + l ) h - ( N + l ) l n  (25) 

Now we insert these solutions in the exponential. The exponent 
becomes 
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With y = z + J, the integral becomes 

ln{fexpI-~)(z+J)2+NeZ+ dy} 

N + N(eZ+h 

Using the method of steepest descent again, we arrive at the extremum 
equation 

Z 
- ~-~- (e z+h - 1) = 0 (29) 

This, in the limit h = 0, is just the percolation equation for the N = oo limit 
of the model we are investigating. The quantity J takes the role of the 
probability of a bond's being "good," or "active." Actually, for the case at 
hand that probability is J/N. The quantity z/J is the fraction of the sites 
contained in the spanning cluster. Note that when h = 0 equation (29) has 
the positive solution z = 0 when J < 1 and a positive nonzero solution when 
J >  1. The appearance of this nonzero solution heralds the onset of per- 
colation. The mean field theory of percolation on an infinite lattice has 
been treated at length elsewhere, (~3~ and we will not discuss it any further 
here. However, the steepest descent evaluation of the replacement formula 
for the generating function, equation (28), will be developed further in 
Appendix A in order to clarify and resolve certain ambiguities encountered 
in mean field infinite-lattice percolation theory. 

3. F INITE-SIZE EFFECTS 

The percolation transition on the infinite lattice is sharp and non- 
analytic, while on a finite lattice it will be rounded and without 
singularities. To look more closely at the latter transition, we have to 
improve on the replacement approximation. To that end, we look more 
closely at the problem of extracting the coefficient of cN/N! in 
Y~(ce h)ln[52(c)]. 

For  the moment, consider the problem for the function 

Pi 
(ce-h) (c,- c) (30) 

The relevance of the following calculation to the problem at hand is easily 
demonstrated using the analytic properties of Z(c). Indeed, in Appendix B 
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it will be seen that lnEZ(c)]  can be written as an appropriate integral of a 
function of the form 

f P(c') dc' 
Ct--C 

where P(c')=discontinuity of In Z(c ' )  across the real axis. Knowing this, 
we proceed with the calculation. The sought after coefficient is just e Nh 
times the corresponding coefficient in 

Pi 
(c) (ci-ce h ~ )  (31) 

We proceed as follows. First, note that the simple pole Pi / ( c i - ce  h) can be 
written 

Pi f ?  e (c~ ceh)t dt (32) 

Thus, what is needed is the coefficient of cN/N! in 

E_ - ~ y  + c ( e Y - h + t )  - (33) 

which is 

Pi EeY-h+t]Nexp -- -~ --cit dydt  (34) 

The factor [eY-h+t]  N c a n  be expanded binomially. The double 
integral (34) becomes 

U N! ej(y h)t(N_j) ~ . N 2 dt 

There are three cases to be distinguished: (1) the first few terms in the 
series dominate ( j ~ N ) ,  (2) the last few terms dominate J ~ N ,  and (3) 
terms in the middle of the expansion are the most important. It is 
straightforward to show that we are justified in neglecting all but the first 
few terms in (35) when cie y-h is smaller than N or more precisely 

N_cie(Y h) 
41  (36) 
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The last few terms dominate when the inequality above is reversed. The 
third case applies when 

N _ c i e ( Y  -h) 
x/~ - 0 ( 1 )  (37) 

This latter case, when the middle terms are important, will be the case 
when we are near the phase transition and this is the case we now consider. 

3.1. Importance of the Midd le  Terms 

Set 
( y - h )  cie = N + aN 1/2 (38) 

Then the sum in (35) becomes 

N N! (N+aNI/2)  t X" 

i~_o e N + i l! 

N N[ (N+aN1/2) - t  
= -o~CN+I (N-- l ) !  [c~eY-h]u 

i 1 - - . e x p [ N ( y - h ) +  N l n N -  N - ( N - l ) l n ( N - l )  
/ = 0  Ci 

+ N -  l -  l l n (N+  aN1~2)] 

E ,2 (,2)1 = 1 .exp  N ( y - h )  laN 1/2+0 
,=oe-; - ~ -  

--~-'i o exp N ( y - h ) - - ~ - - ~ - l a N  ~/2---+l-~-~6N 2 dl (39) 

Where Stirling's formula was used to obtain the first approximate equality 
above. The result for (35) is thus the following double integral: 

( ,2 ~ 
�9 exp - 2 N - l a N  1/2_6N ~ + l  dl 

N 2 

where the subscript ~ on the y integration is to indicate that it is to be 
restricted to a region to be described in more detail later. Restrictions on 
the y integration also apply in cases (1) and (2). 
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It is a straightforward exercise to verify that in the limit ]a] ~> 1 the 
integral over 1 in (40) yields an expression appropriate to case (I) or (2). 

We are almost in a position to extract the desired result. Our next task 
is to determine the singularity structure of ln[-Z(c)]. 

3.2. A n a l y t i c  Proper t i es  of  I n [ ~ ( c ) ]  

In Appendix B, we saw that the function Z(c) is analytic in the com- 
plex c plane except for a cut that starts at c = 0 and extends to c = ~ along 
the real c axis. The discontinuity across this cut is pure imaginary. In the 
limit of large N we may distinguish between two regions. 

3.2.1. c < (N/J) e - l .  Here 

~ ( c ) ~ K ~ e x p  -~-~y~ _+i 'K2exp - ~ - j y ~ + c e  (y2-h~ (41) 

where K1 and /s are multiplicative constants associated with Gaussian 
integrations about the extremum points Yl and Y2. These two points are, 
respectively, the maximizing and minimizing solutions of the extremum 
equation (21) the plus sign applies above the cut and the minus sign below, 
The discontinuity in the log is thus e O(X( 

3.2.2. C > (N/J) e-1. In this case the extremum equation has no real 
solutions. The real and imaginary parts of Z(c) are of the same order of 
magnitude. When c - ( N / J )  e 1=3 we have, neglecting overall mul- 
tiplicative factors, 

~ ( c ) ~ K e x p  - - ~ y ~  +ce (y2, h) (42) 

where, as before, K is associated with the Gaussian integration about one 
of the complex extremum point y •  The plus subscript refers to the 
extremum point with positive imaginary part and applies just above the 
cut. The minus subscript refers to its complex conjugate and applies just 
below. Here the discontinuity in the logarithm is O(1). 

We know that, given this analytic structure, we can reconstruct the 
function ln[Z(c) ]  by multiplying the discontinuity in the function at c' on 
the branch cut by 1 / ( c - c ' )  and integrating along the cut out to a contour 
that encloses the point c, and then around that contour, as discussed in 
Appendix B. 

Our desired result is thus obtainable in the form of an integral over 
the real variable cl in which P~ is the discontinuity of log[Z(cl )  ]. To this, 
of course, we add the integral around the closing contour. In this paper, we 
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concentrate on the region in which the percolating transition takes place, 
and here the third case above holds [c~-(N/J)e-l]. 

Thus, the generating function for the percolation problem is propor- 
tional to the integral 

c m  _ t •  _ fo fRayImlny (e)[ffexp( 2N laN-i/2 6N2+l~N) dl 1 

N z x e x p [ N ( y - h ) - ~ - j y ]  (43) 

Expression (43) is a key element in our analysis of the one-state Potts 
model phase transition. In order to facilitate the analysis, it proves useful to 
reparametrize it in terms of variables that scale with the proper power of 
N, the number of lattice sites. To do this we write 

c = (N/J+ N 1/3 A) e -1 +h 

1 
7 =  (1 +N-1/3t) 

l = LN 2/3 (44) 

y =  [1 +N-~/3(- t - -L+w)]  
h = HN 2/3 

With the above substitutions, and after some tedious but straightforward 
manipulations, the exponent in (43) reduces to 

(N  NZ/3t N1/3t2 ~)  N1/3w 2 (L-k - t )  3 t 3 
2 + ~  2 -6 ~-~--AL 

+ w ( t Z + t L - t 2 ) - N h + O ( N  -~/~) (45) 

The term -N1/3w2/2 in (45) represents a strong Gaussian-type dam- 
ping, w will be characteristically O(N -1/6) and therefore the last term in 
(45) can be neglected. After integrating over y, which is w, in (45) we are 
left with 

e x p ( ~ - - N h )  f d A I m [ l n ~ ( c ) ] f : e x p I - - ( L + t ) 3  t3 3L] 6 +-6- dL 

(46) 
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where c=(N/J+N1/3A)e  ~+h. In order to proceed further, we need to 
perform a similar reduction for 52@). ~2 is defined by the integral 

By setting y = 1 + N-I /3x and proceeding as before, we obtain 

+ (A + g )  x + T + O(N-~/s) (48) 

However, since only the Im In Z is required the terms in the exponent 
proportional to N and N u3 can be omitted. They contribute to the real part 
of ~2 only. Putting the two results just obtained together we end up with 
the following expression for percolation generating function in the vicinity 
of its phase transition ( l / J =  1 + N-1/st): 

13 

~ 6 

x I m l n { f c e x p I ( A + H ) x + x - - - 6 ] d x } ) + K  C (49) 

The term K c in (49) represents the contribution to the generating function 
that comes from the integration along the center contour F as discussed in 
Appendix B. This term provides a smooth background to the much more 

L I i I l 

-5 -4 -3 -2 -1 

I I L I 

t=O 1 2 3 4 

Fig. 1. The percolation generating function plotted versus the variable t, defined in (44). 
Smoothly varying background contributions have been eliminated. 
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L .  I I I I [ I I I [ 

-5 -4 -5 -2 -1 t:O 1 2 5 4 5 

Fig. 2. The second derivative of the percolation generating function plotted versus the 
variable t, defined in (44). A background contribution with constant slope has been 
eliminated. 

rapidly varying contribution from the first term in (49). The contour C is 
described in Appendix B where an asymptotic expression is developed for 
Z(c). 

At this point, to obtain exact results in the region of the phase trans- 
ition, numerical integration of (49) is required. As an illustration Fig. 1 and 
2 are the numerical results for the generating function itself and its second 
derivative. The latter quantity being the analog of the specific heat. For this 
model, the mean field percolation model in the infinite site limit, the 
specific heat has a discontinuous slope. However, as Fig. 2 demonstrates 
the discontinuity is rounded off for system with a finite number of sites, as 
we expected. 

4. C O N C L U S I O N S  

Our studies of the one-state Potts model on a finite lattice have led to 
a reformulation of the partition function and, ultimately, to numerical 
algorithms for the calculation of thermodynamic quantities in the 
immediate vicinity of the percolation transition. In particular, we are able 
to assess in quantitative detail the rounding effects of finite size. In this sec- 
tion, we comment  on some aspects of our calculational method on the 
results we have obtained and on some possible extensions. 

First, it is interesting to compare our approach with those previously 
employed. All other treatments of the one-state Potts model have the vec- 
tor a returning to an integer dimensionality until later on in the 
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calculation. In the case of the Kac model treated, for example (see the 
paper by Wu), the Hamiltonian after some processing takes on the form 

NS2 Nln eS i (50) 
2J i 1 

where the n-dimensional vector, S is subject to the requirement 

~ S , = 0  (51) 
i = /  

Assuming that the ordering is along the "i" axis we make the replacement 

& --+ - (n  - 1 ) S 
(52) 

S , = ' "  = S n =  +S 

so that (50) becomes 

Nf(n-1)2S2+(n-I)SX ] 2J ln(e -{~ ~ ) S + ( n _ l ) e  s) 

--+ N(n- 1) ~j+eS-S + O(N(n- 1) 2) (53) 

Thus the n-state partition function is 

_ S 2 
exp N(n-1) [-~j-+ (eS- S)] + O(N(n-1) 2) (54) 

Note that the leading term in ( n -  1 ) in the exponential corresponds to the 
replacement approximation Eq. (28) in Section 2. In the case of a standard 
thermodynamic system, one proceeds by looking for a maximum in the 
exponent, reasoning that in the limit of large N this contribution to the 
partition function dominates all others. In this way, one is led to the 
extremum equation, 

0=~-~ --~f-+ (eS- S) 

S 
- F e s -  1 ( 5 5 )  

J 

which is just the equation of state (29) with y replaced by S. 
There are, however, two difficulties associated with this approach. 

First, the argument for the asymptotic dominance of the configuration that 
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maximizes the exponent in (54) does not survive the limiting procedure 
required to obtain the proper correspondence between the one-state Potts 
model and percolation. To achieve that correspondence one f i rs t  takes the 
limit n ~ 1 and then the limit N--+ oe. Proceeding as described in Section 2, 
one is left with Eq. (28) for the percolation generating function. 

Assuming, for the time being, that we are justified in taking the limit 
N ~ oe before allowing n to be infinitesimally close to one we see an even 
worse problem emerging when we examine the exponent in (56). While the 
expression ( $ 2 / 2 J ) - ( e  s -  S) has local minima at and around S =  0 (for 
J ~ l )  the true minimum of the expression above, and hence the true 
maximum of lies at S =  -0% where the expression diverges to -oe .  This 
free energy minimum, which obviously dominates all other contributions to 
the partition function, is commonly ruled out by fiat. It is simply noted 
that the quantity S corresponds to a probability in percolation, and that a 
negative probability has no meaning. Such an argument, unfortunately, 
does nothing to elucidate the mathematical structure leading to this 
pathological and apparently fictitious minimum. It simply rescues the 
model, and in the process casts doubt on the utility of the Ports model con- 
nection. The one consolation is that the correct equation of state can be 
obtained by directly considering graph statistics, and without recourse to 
the Potts model connection. 

An additional problem with previous calculational approaches is 
worthy of note. The one-state Potts model free energy, in the presence of 
an ordering field, h, 

S 2 (eS+h _ N I - - ~ -  ) -  S)]  (56) 

subject to the equation of state, 

S =  e s + h  - -  1 
J 

(57) 

is equal to the generating function 

F =  y" n}e +jh 
J 

(58) 

This means that in our mean field model 

_ N e S + h  
Oh 

~ ' , jn )e  jh - (59) 
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Setting h = 0 we have 

~ jn~ = Ne  s 

We know that the left-hand side is just equal to the total number  of sites 
on the lattice. This sum rule holds whether the percolation transition has 
occurred or not. The right-hand side, however, departs from that number 
below the percolation transition, when there is a positive solution to (56). 
What  has happened is that the contribution of the percolating cluster to 
the sum 

J 

has disappeared. This will occur when the quantity h is nonzero and 
negative, no matter  how small, as long as when the limit N ~  oe has been 
taken. One cannot apparently take the limit h = 0 before going to the ther- 
modynamic limit. The ability to take limits in this latter order is crucial to 
the investigation of percolation on a finite lattice. As indicated in Appen- 
dix C the method we use here allows us to take limits in the proper order, 
and the sum rule is covered, even at the percolation transition. 

The resolution of the above paradoxes is an important  result. It 
indicates that our approach, or one like it, may prove useful in the 
investigation of other replicated models, including spin glasses, that suffer 
from a more serious problem. One might hope for a mathematically unam- 
biguous resolution to the de Almeida-Thouless instability. (~7) Such work, 
however, lies in the future, 

As for results relevant to percolation, we are able to present useful 
algorithms for the calculation of key thermodynamics quantities in the 
immediate vicinity of the percolation transition. 3 The curve displayed in 
Fig. 2 is the result of the implementation of one such algorithm. This curve 
displays both the rounding effects of finite size on the specific heat analog 
and some unremarkable structure that goes beyond a simple rounding off 
of the cusp one would see in an infinite system. Whether this structure 
would be visible in a Monte Carlo study of mean field percolation in a 
small lattice is not at all obvious. Nevertheless, at sufficient resolution and 
for a large enough sample it ought to show up. 

3 We note that finite-size scaling has been applied to percolation by Derrida and De Seze, (~8) 
who utilize transfer matrices and Nightingale's (18) phenomenological renormalization group 
approach. A finite-size scaling analysis of nonrandom mean-field-type spin systems has been 
carried out by Botet et al.(Is) We are grateful to the referee, who brought these works to our 
attention. 
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The next stage in our study of percolation on a finite lattice is to con- 
sider the more physically reasonable short-ranged bond problem. 
Preliminary studies indicate that the method developed here can be carried 
over to this much more relevant problem. Calculations are now in progress. 
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A P P E N D I X  A 

In this appendix, we investigate the analytic structure of the integral 

I(c)= fceXp I -  Nz2 + c(eZ- z)] dz 

and develop an asymptotic expansion I(c) when c = N>> 1. 
For  c > 0, there are two choices for the contour C which keeps the 

integral finite, and when c < 0, the entire real axis suffices. The appropriate 
contours are shown in Figure 3. It is easy to show that c = 0 is a branch 

Im (z) 

Tr[ C+ 

Re(z) 

-~q" C~ 

Fig. 3. The two contours which are used to defined the integrals t(N) and I(c). 
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point of I(c) and the positive real axis can be chosen as a branch cut. Just 
above the cut, if C+ path is chosen then C must be chosen just below the 
cut. The integrals I+ and I are conjugates of one another, so the discon- 
tinuity across the cut 

I+ (c) - I_ (c) = 2 Im I+ (c) (A1) 

These results will by used in Appendix B and here we are interested in 
developing an asymptotic expansion for I when c = N which will lead to 
explicit results for the generating function in the replacement 
approximation. 

/ (a) J< l  

(b) J > l  

/ 
/ 

(c) J : l  

Fig. 4. The behavior of the exponent, g(z)- -z2/2J+ (e:-z), near its extrema points for 
(a) J <  1, (b) J >  1, and (c) J =  1. 

822/42/5-6-9 
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We have 

I(N) = f e Ng(z) dz (A2) 

where g =  - z2 /2 j+ (eZ-z).  The contours C+(or  C ) can be deformed so 
that g(z) is always real and, for large N, most of the contribution to the 
integral will come from the region near the maximum of g(z). The extrema 
points are determined by the equation g ' =  0, which leads to 

z 
- = ( e  z - -  1 )  ( A 3 )  
J 

A simple graph of (A3) shows that there are always two real roots, one at 
zl =0 ,  and the second root is > 0  for J <  1 and <0  for J >  1. For J ~  1 it is 
given approximately by z2 = 2 [ ( l / J ) - 1 ] .  From the second derivative of g 
it is also clear that for (a) J < l ,  extremum at Z l = 0  is a max and 
z2 = 2 [ ( l / J ) -  1 ] > 0 is a minimum along the real axis; (b) J >  1 extremum 
at z2 = 2 [ ( l / J ) -  1 ] < 0 is a max and zt = 0 is minimum along the real axis. 
In both cases, the maximum occurs for the smallest z. The function g is 
schematically shown in Fig. 4. It is clear from Fig. 4 that the steepest- 
descents method leads to the correct description of the mean field per- 
colation phase transition and avoids arbitrariness in selecting the proper 
roots present in the infinite lattice result. Presumably the latter ambiguity is 

4 +  

I ra (z)  

Tri 

/ 
Re(z ) 

Fig. 5. Steepest-descent path used to evaluate the integral, I(c) for the case J <  1. 
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introduced by taking the th6rmodynamic limit too early in the calculation 
of the replica system. 

The steepest-descent evaluation of I ( N )  is straightforward, with the 
only complication arising when results near the transition J =  1 are needed. 
For this case, cubic terms must be retained in the calculation because the 
second derivative g"(z )  = ( - 1/J) + e z --* 0 as J ~  1. However, even for this 
case, the path C+(or C )  can be deformed so that g(z )  is real yet pass 
through the maximum of g(z) .  It is determined analytically by requiring 
Im g(z )  to be zero. The contour leaves the real axis at the minimum point, 
i.e., at z = 0  for J <  1 or z = 2 ~ _ ( 1 / J ) -  1] for J >  1 and then follows a curve 
given by the equation y = , , / 3  Ix2+  ( 2 r / s ) x ]  1/2 where r =  [g"[ and s =  g '  
out to z = ~ i +  oo. The path, for the case J <  1, is drawn in Figure 5. 

A P P E N D I X  B 

The analytic properties of 

K = f exp[ - ( N / 2 J )  z 2 -~  CC z ] dz 

are very similar to I (c)  discussed in Appendix A. The appropriate contours 
which define Z are again C__ and C_.  The integral has a branch point at 
the origin, c = 0, and the positive real c axis may be taken as a branch cut 
to constrain Z to be a single-valued function of c. The function is discon- 
tinuous across the real c axis with C+ being the appropriate contour just 
above and C being the one below. The discontinuity is given by 

lim K ( c + i E ) - ~  ( c - i e ) = 2  Im ~ ( c ' )  
~ 0  + 

(B1) 

Aside from the branch along the positive real axis, ~(c)  has no other 
singularities in the finite c plane, nor does it have zeros. This implies that 
Z(c), or for that matter In Z(c), can be expressed as 

ZTCI J F C - -  C 
(B2) 

where the contour, F, for the integration over c' is drawn in Fig. 6. 

C ! f N LJo c 2 c  ~ , - , c - c  j 
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Imc 

f 
/ 

/ 
/ 

! 

i ( 
\ 
\ 

\ 

\ 
\ 

oC \ , ~r 

- -  __~ C m ...'.-7.-.'.-.-.-..7.'.-.'.-.-...'.': Re c 

" - - /I 

Fig. 6. Contour F specified in Eq. (B2), the Cauchy formula for Z(c). 

Using Eq. (B1) and defining 

1 Z,(c') 

we have 

~ (c)=l  fcmIm Zc+ (c') , de + G(c) (B4) 

where or(c) has no singularities for finite c. This result also holds for the 
In Z(c)  and was what was used in the text. As we shall see below, when 
c > (N/J)  e -1  the Im 52 becomes large and the integral along the real axis 
is dominant whereas when c < ( N / J ) e  1 a(c) dominates. 

Since we will always be in the region of large N, the Im Z(c)  can be 
determined using the method of steepest descents. We write our integral as 

(c )=  [_ e x p [ ( - N / 2 J ) z  2 + c e  z] d z =  [~ g g(z) 

C+ ~ C  + 

the extremum points are determined from g ' =  0 and are the solutions to 
the equation 

c = (N/J)  z e - z  (B5) 

A simple graph of the right-hand side of (B5) shows that for 
c < ( N / J ) e  -1 there are two real roots zl and z2, which approach 1 (z 1 and 
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Z2--'~ | )  as c ~  ( N / J )  e 1, but when c > ( N / J ) e  -1 there are no real 
solutions to B5. 

Case 1: when c<<.(N/J)  e 1 the two roots will be close to 1. 
Anticipating this we set 

z =  1 + N - 1 / 3  y ,  

c = ( N / J )  - N1/3A, 
y and A ~ 1 (B6) 

Substituting (B6) into (B5) and to lowest order we have 

y2 = 2A + O ( N -  w3) 
so (B7) 

z l = l _ ( 2 d ) W 2 N  1 / 3 ,  z 2 = l + ( 2 A ) w 2  N w3 

A plot of g ( z )  is shown in Fig. 7 in the region of the extrema. As the figure 
indicates, zl corresponds to a maximum along the real axis and z2 to a 
minimum. The reverse is true parallel to the imaginary axis. 

As long as we are not too close to the transition ( J =  1) the integral is 
dominated in region zl and the usual Gaussian approximation suffices. 
Hence for 

c < ( N / J )  e 1 

~ +  (c )=  K 1 e x p [ ( - N / 2 J )  z 2 + ce z~ ] + i K  2 e x p [ ( - N / 2 J )  z 2 + ce z2 ] 
(B8) 

and for N>> 1 

ImE+ ~ReE+ 

z) 

I I I 

z! I z 2 
Re (zl 

Fig. 7. A plot of g(z) = - (  N/2J) z 2 + ce= for the case, c < (N/J) e i 
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Case 2: c > (N/J) e-  1. Now the extremum points are complex. Follow- 
ing the same analysis, but defining c = [(N/J)+ N1/3A] e -1, the roots are 
given by 

Yl = i(2A)i/211 +-~ 1/3(2A)1/2...] 
(B9) 

Y2= -i(2A) 1/2 [1 ~i ] 
- N-1/3(2A)I/2... 3 

~ +  will be proportional to e g(~l~, except very close to the transition point, 
resulting in a phase function ei(l/3~(2z?/2 to lowest order. Hence we have 

Im in ~ +  = �89 3/2 (B10) 

However as the transition region is approached, 3--+0, the Gaussian 
approximation is no longer valid and cubic terms contribute to the leading 
term in the asymptotic expansion of Z + .  Most of the contribution to the 
integral for Z +  comes from the region around the extremum zl and the 
value of the exponent in this region is well approximated by a Taylor series 

, . g"(Zl) )2+g"(zl)(z_zt)3.. .  g(z) = g[z~) + ~ ( z -  z l 

= g(zl) + u + iv (B12) 

Again the path through the extremum is chosen such that 
Im(g - g(z 1 )) = 0 and Re(g - g(zl)) = u < 0. 

Im (z) 

J I 
1 

Re (z} 

Fig. 8. Steepest-descent path used to evaluate the integral )Z(c) for the case J <  1. 
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This leads to the following equation for the path of integration 
through the extremum at zl 

Y ~ I1/3 + N-1/3(2z~)1/211/2 
x =  L J 

which is depicted in Fig. 8. 
The corrections to the Gaussian result are now easily obtained. 

A P P E N D I X  C 

Here we show how the sum rule discussed in Section 4 is recovered. 
Using the fact that F is the coefficient of cJV/N! in (16) (multiplied by the 
factor exp[ ( -NJ /2)  + Nh]) we have 

N! : 1 ( N ) 1/2 

+ l n ~  ( c ) } e x p [ ( ~ J ) + h ] d c  (C1) 

where the integral is over a contour just surrounding the origin. Replacing 
c by ce ~' we find that the only h-dependent contribution to F is 

e x p ( - N J )  N ! c ~ l  (~nNj)l/2 ~ ( c )  l n [ ~ ( c e ~ ) ] d c  (C2) 
2ni Y c N + I 

If now we take the derivative with respect to h of this expression we obtain 

( ~-J) N!c~ 1-~--(N)1/2 ~(c) ~'(ceh) cehdc (C3) 
exp -- 2ni ~f cN + t - ~  ~(ceh) 

Setting h = 0 

Since 

( NJ) N!i HJ--/N)lJ22' 
exp - 2 J27ciJcN+l\27Cj j (c) 'cdc (C4) 

exp ~ y + ce y + y)  dy (C5) 
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we can perform the contour integral over c immediately. We obtain 

-~y + Ny)dy=N (C6) 

This result is independent of the quantity J, and is the correct right-hand 
side of the sum rule. 

REFERENCES 

1. S. R. Broadbent and J. M. Hammersley, Proc. Cambridge Philos. Soc. 53:629 (1957). 
2. H. L. Frisch and J. M. Hammersley, J. Soc. Indust. Appl. Math. 11:894 (1963). 
3. V. K. S. Shante and S. Kirkpatrick, Adv. Phys. 20:235 (1971). 
4. C. M. Fortuin and P. W. Kasteleyn, Physiea 57:536 (1971). 
5. R. B. Potts, Proc. Cambridge Philos. Soc. 48:106 (1952). 
6. K. Wilson, Phys. Rev. B4:3174 (1971); K. Wilson and M. E. Fisher, Phys. Rev. Lett. 

28:240 (1972); K. Wilson and J. Kogut, Phys. Rev. 120:75 (1974). 
7. A. B. Harris, T. C. Lubensky, W. K. Holcomb, and C. Dasgupta, Phys. Rev. Lett. 35:327 

(1975). 
8. M. J. Stephen, Phys. Lett. A56:149 (1976). 
9. D. Amit, J. Phys. A 9:1441 (1976); D. S. Gaunt, S. G. Whittington, and M. F. Sykes, J. 

Phys. A14:L247 (1981 ). 
10. S. Kirkpatrick, Phys. Rev. Lett. 36:69 (1976); D. W. Hermann and D. Stauffer, Z. Phys. 

B44:339 (1981). 
11. M. Kac, Statistical Physics, Phase Transitions and SuperJluidity (Gordon and Breach, 

New York, 1968). 
12. P. Erd6s and A. R6nyi, Publ. Math. Inst. Hung. Acad, Sci. 5:17 (1960). 
13. F. Y. Wu, J. Phys. A15:L365 (1982). 
14. F. Y. Wu, J. Stat. Phys. 18:115 (1978). 
15. M. J. Stephen, Phys. Rev. B 15:5674 (1973). 
16. J. Hubbard, Phys. Lett. 39A:365 (1972). 
17. J. R. L. de Almeida and D. J. Thouless, J. Phys. Al1:983 (1978). 
18. Derrida and De Seze, J. Phys. (Paris) 43:475 (1982); Nightingale, Physica 83A:561 

(1976); Botet et al., Phys. Rev. Lett. 49:478 (1982). 


